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The competition between fracture modes in monolithic brittle materials loaded in
cyclic contact in aqueous environments with curved indenters is examined. Three main
modes are identified: conventional outer cone cracks, which form outside the
maximum contact; inner cone cracks, which form within the contact; and
median–radial cracking, which form below the contact. Relations describing
short-crack initiation and long-crack propagation stages as a function of number of
cycles, based on slow crack growth within the Hertzian field, are presented.
Superposed mechanical driving forces—hydraulic pumping in the case of inner cone
cracks and quasiplasticity in the case of median–radials—are recognized as critically
important modifying elements in the initial and intermediate crack growth. Ultimately,
at large numbers of cycles, the cracks enter the far field and tend asymptotically to a
simple, common relation for center-loaded pennylike configurations driven by slow
crack growth. Crack growth data illustrating each mode are obtained for thick
soda-lime glass plates indented with tungsten carbide spheres in cyclic loading in
water, for a range of maximum contact loads and sphere radii. Generally in the glass,
outer cone cracks form first but are subsequently outgrown in depth as cycling
proceeds by inner cones and, especially, radial cracks. The latter two crack types are
considered especially dangerous in biomechanical applications (dental crowns, hip
replacements) where ceramic layers of finite thickness are used as load-bearing
components. The roles of test variables (contact load, sphere radius) and material
properties (hardness, modulus, toughness) in determining the relative importance of
each fracture mode are discussed.

I. INTRODUCTION

Many brittle material systems used in biomechanical
and other engineering applications are highly susceptible
to damage from concentrated surface loading.1 This is
especially true in contact loading with indenting objects,
where local stresses can easily exceed the elastic limit
and cause fracture. All-ceramic dental crowns and total
hip replacements, operating under exacting cyclic load-
ing in hostile aqueous environments, are examples of
biomechanical systems that are particularly vulnerable to
this kind of damage.2–7 In the case of a brittle material in
contact with curved indenters in single-cycle loading in
dry environments, the damage takes the form of a com-
petition between outer cone cracks that initiate outside

the maximum contact from surface flaws and median–
radial cracks that initiate from shear-generated micro-
cracks within a quasiplastic damage zone (Fig. 1).8 Con-
ventional cone cracking is more dominant in harder ce-
ramics, where the contact is mostly elastic; radial crack-
ing is more dominant in softer ceramics, where the con-
tact is more quasiplastic. However, in any given material,
either form of fracture can dominate, depending on the
loading conditions. Both crack types are accelerated by
slow crack growth.9 Cyclic loading can further accelerate
the evolution of median–radial cracks by mechanical fa-
tigue within the quasiplastic zone. In water, cyclic load-
ing can also lead to the generation of a special kind of
inner cone crack that forms inside the expanding contact
and propagates downward quickly at a relatively steep
angle relative to its outer counterpart (Fig. 1).10 Mechani-
cal fatigue in this case is associated at least in part with
hydraulic pumping within the starting cracks.11
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In this study, we examine the competition between
the various fracture modes in monolithic brittle speci-
mens, i.e., on specimens sufficiently thick that the load-
ing stresses are concentrated at the top surface. We pre-
sent crack growth data for thick soda-lime glass slabs
indented with tungsten carbide spheres, covering the en-
tire crack evolution from initiation in the near-field to
propagation in the far-field. Glass is an ideal model ma-
terial for this purpose, representative of ceramics at the
more brittle end of the spectrum but transparent, enabling
in situ observation of each competing fracture mode.
However, general conclusions concerning different ce-
ramics can be drawn from the results. Tests are con-
ducted in cyclic loading in water. Fracture mechanics
relations derived from a crack velocity equation are used
to account for some of the basic trends in the data. We
demonstrate that radial cracks and inner cone cracks,
even when sluggish in the initiation stages, tend ulti-
mately to outgrow outer cone cracks at large numbers of
cycles. Whereas slow crack growth can account for the
long-crack propagation of all crack types, superposed
mechanical driving forces play a dominant role in the
more complex initiation and intermediate stages of the
inner cones and radials. The results set the stage for
subsequent extension to bilayer structures consisting of
brittle layers on compliant support substrates, especially
relevant to dental crown and hip replacement structures,
where the fractures can lead to catastrophic failure.

II. ANALYSIS

A complete fracture mechanics analysis of each crack
mode under the action of Hertzian contact must ulti-
mately embody both initiation and propagation phases of
growth.1,2 Analysis of the initial small-flaw stages is in-
variably more complex than the long-crack propagation
stages, because of the strong gradients in the near-contact
fields. In this section, we summarize some of the basic
equations used to describe certain growth phases of the
different fracture modes shown in Fig. 1: O, outer cone
cracks; I, inner cone cracks; R, radial cracks. A thick
specimen is indented with a hard sphere of radius r at
load P and contact area a over n cycles, in a liquid
environment. The load P(t) is taken to be periodic with
frequency f, e.g., sinusoidal or sawtooth (Fig. 2). The
ensuing crack depth is c.

The starting point of any computation of crack evolu-
tion is the specification of an appropriate stress-intensity
factor of the functional form K(P,c). The contact is usu-
ally cycled between near-zero and maximum load Pm.
Fractures subject to slow crack growth are governed by a
velocity equation12,13

� = �0�K�T�N , (1)

where N is an exponent (≈17 for soda-lime glass in wa-
ter9), �0 is a velocity coefficient, and T is material tough-
ness. In principle, Eq. (1) can be integrated to obtain
solutions for the critical number of cycles nI(Pm,r) to
initiate the cracks and the ensuing propagating crack
depths c(n,Pm). However, as indicated in Sec. I, super-
posed mechanical forces can drive the cracks in cyclic
loading, especially in liquids, as evidenced for instance
by the change in angle between outer and inner cone
cracks. Such forces ultimately need to be incorporated
into any complete description. However, because of their

FIG. 1. Schematic illustration of crack geometry for cyclic contact on
brittle monolith with sphere of radius r at load P, contact radius a, for
number of cycles n on brittle monolith specimen. Showing three crack
modes, depth c: outer cone cracks (O), inner cone cracks (I), and
median–radial cracks (R).

FIG. 2. Fatigue loading P(t) in cyclic loading, here shown as sawtooth
function between zero minimum and maximum at Pm. Maximum loads
at which outer (O) and inner (I) cone cracks experience tensile stresses
at their mouths indicated by horizontal dashed lines.
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complexity, only qualitative descriptions of these forces
will be presented here.

A. Initiation

1. Cone crack initiation

Consider the growth of a cone crack from a surface
location R (Fig. 1). Such cone cracks initiate from flaws
at the contact surface. Outer cone cracks form just out-
side the maximum contact circle at RO, inner cone cracks
within the maximum contact circle at RI, typically at
RI ≈ RO/2.10 The outer cone crack mouths will be subject
to a tensile stress �o through the entire contact. The inner
cone crack mouth will experience negative �o during the
engulfment stage, inhibiting slow crack growth in the
initial stages but enhancing hydraulic pumping of liquid
into the confined surface flaws.

Consider for the moment the extension of outer (O)
cone cracks by slow crack growth alone. The stress-
intensity factor takes the functional form K(P,c) �
��oC1/2F(C), where C is the crack length measured
along the downward path (� c/sin�, with � the angle
between the cone and the specimen surface), F(C) is a
dimensionless function and � is a geometry coefficient.9

In the limit of a surface crack under uniform tensile stress
� � �o in a semi-infinite medium, � � 1.12 and F �
1 for all C. However, in the Hertzian field the tensile
stress falls off rapidly along its downward path below the
top surface,14 i.e., � < �o for all C > 0, so for cone cracks
F(C) < 1 at all C > 0. Hertzian contact relations can then
be used to determine a functional dependence �o(P,R,r).
Combining this dependence with Eq. (1) then enables
derivation of the critical number of cycles to initiate a
cone crack from the starting surface flaw. Details of the
calculation in terms of the variables of interest here have
been given elsewhere9 and are reproduced in slightly
modified form in the Appendix. For outer cone cracks,
for which �o > 0 throughout cycling at a � RO, the result
has the form nI � (PC/Pm)N/2 where the quantity PC

designates the critical load to initiate a cone crack in the
first cycle

PC = A��f��0��rT�E*�2�3�2�NrT2�E* , (2)

with A � A(N) a dimensionless quantity (Appendix).
This relation, with its linear r dependence, is a form of
the well-documented Auerbach’s law.2,14 Note the ap-
pearance of toughness T as a dominant material param-
eter, reflecting an intrinsic resistance to crack extension.

In principle, the same slow crack growth process ap-
plies to inner (I) cones, with allowance for the fact that
the initial surface flaw is exposed to tensile opening
stresses only within that portion of the cycle that lies
within a � RI. For RI � RO/2 and for the sawtooth
loading function in Fig. 2, the same kind of nI(Pm/PC)
relation applies but with a substantially higher value of A

in Eq. (2) (see Appendix). The higher number of cycles
nI to initiate inner relative to outer cone cracks simply
reflects a much diminished surface stress level �o at the
smaller R. However, the above argument assumes that
the governing mechanism of crack extension is slow
crack growth. This is surely the case for the outer cone
cracks, which remain always outside the oscillating con-
tact.9 However, inner cone cracks will be driven by a
superposed mechanical hydraulic pumping force from
intrusion of water into the confined surface fissures at
flaw sites during the engulfment stage of contact, incre-
mentally prizing open the surface flaws in successive
cycles.10 Thus the true nI will always fall below the
predicted value from slow crack growth relations alone.
At present, there exists no explicit expression for this
additional influence.

2. Median–radial crack initiation

In contacts on highly brittle surfaces with blunt indent-
ers median–radial cracks usually form after outer cone
cracks and so remain contained subsurface within these
preceding cracks. (Exceptions occur beneath sharper in-
denters—e.g., spheres with smaller r, Vickers indent-
ers—where the radials break free of any confining cones
and spread radially outward.15) The evolution of near-
surface median cracks is considerably more complex
than that for outer cone cracks. Median cracks initiate
from coalescence of closed shear microcracks generated
within a quasiplastic zone beneath the contact16,17 and
are enhanced in cyclic loading by degradation of friction
at the microcrack interfaces.18,19

Computation of the critical number of cycles to initiate
a crack on a median plane containing the contact axis
involves a micromechanical analysis of microcrack coa-
lescence, taking into account the internal frictional deg-
radation.17 Imposing such a coalescence condition can, in
principle, provide a (monotonically diminishing) func-
tion nI(Pm/PY) for the critical number of cycles for me-
dian crack initiation,19 where PY is the load to produce
first yield in the contact field8,20

PY = DH�H�E�2r2 , (3)

with H hardness and D a dimensionless constant. How-
ever, only empirical friction degradation functions have
been proposed thus far, so functional analytical relations
nI(Pm/PY) are not well established. In this case, hardness
is the dominant material parameter—the onset of yield is
a necessary precursor to median–radial crack initiation.16

Note that, unlike its counterpart for cone cracks in
Eq. (2), Eq. (3) does not include provision for slow crack
growth (i.e., no �0 term). Slow crack growth can augment
the crack growth, but the mechanical contribution from
quasiplasticity remains the dominant factor in initiation.
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B. Propagation

Once the cracks have initiated, they propagate down-
ward through the Hertzian contact zone. The mechanics
in the intermediate region are complex for all three crack
systems, but especially so for the inner cone and median–
radial cracks. The inner cones are especially complex,
because of the hydraulic effect. In addition, once they
begin to grow downward and outward beyond the contact
compression zone and into the surrounding tensile re-
gion, the inner cones can undergo additional extension
during the contact engulfment stage during cycling. The
median–radial cracks are driven by residual stresses
within the immediate quasiplastic zone, the intensity of
which diminishes because of the cyclic degradation re-
ferred to in Sec. II. A. We note only that these additional
factors will tend to augment crack propagation within the
contact zone, enhancing the fatigue effect.

However, once the cracks enter the tensile far field,
i.e., in the long-crack region c � R (Fig. 1), they all tend
to the basic geometry of a center-loaded penny crack,
with stress-intensity factor

K = �Pm�c3�2 , (4)

where � is a dimensionless crack-geometry term. For
cone cracks, the quantity � depends on the cone angle;
for radial cracks, � depends on the modulus-to-hardness
ratio of the indented material.2 Water can still enter the
crack, but any hydraulic pumping tends to die down in
this region. Which mode dominates is then decided by
the relative values of � for each crack system.

Determination of a crack growth relation in the long-
crack region is determined by inserting Eq. (4) into
Eq. (1) and integrating. This gives9

c = c1n2�3N , (5)

with back-extrapolated crack length intercept at n � 1
defined by

c1 = ��B�0�f �1�N��Pm�T ��2N��3N+2� , (6)

where B � B(N) is another dimensionless quantity.

III. EXPERIMENTAL

Soda-lime glass plates 50 × 25 × 5.8 mm were used as
monolithic brittle specimens for testing. Side surfaces
were polished to enable in situ viewing during loading.
Top surfaces were abraded with 600 SiC grit to introduce
controlled flaws for cone crack initiation.21,22

Contact tests were performed with WC spheres of ra-
dius r � 1.58 mm for an oscillating load between a small
minimum “hold” load 2 N10 and specified maximum load
Pm, at fixed frequency f � 1 Hz. Some comparative tests
were run with spheres of radius r � 3.18 mm and
5.18 mm at a maximum load Pm � 500 N. A drop of

water was placed in the contact zone and refreshed
throughout the test duration. A video camera was used to
view the crack evolution through the glass side walls,21

slightly tilted upward to view the entire contact zone. The
depths c of each crack system in any given test were
thereby measured as a function of number of cycles n
(Fig. 1). In the case of any asymmetrical crack penetra-
tion, especially with inner cones, the crack size was
measured at the deepest point.10 Since they tended to
form first, the outer cone cracks were most easily
tracked. Inner cone and median–radial cracks tended to
be obscured by the outer cone cracks in their early stages,
making evaluation of critical conditions somewhat sub-
jective in the initiation region. All crack types were
clearly visible in the later, fully propagating, stages of
growth.

IV. RESULTS

A. Crack morphology

Video frames of crack morphologies in their well-
developed stages (n > 104 cycles) are presented in Fig. 3.
Figure 3(a) shows O and I cone cracks at Pm � 120 N.10

In this case the inner cones, despite initiating well after

FIG. 3. Side views of Hertzian indentation sites in soda-lime glass
during cycling at 1 Hz in water with WC spheres of radius r � 1.58
mm after n > 104 cycles. (a) Outer and inner cone cracks at Pm � 120
N and (b) dominant median–radial crack at Pm � 500 N. The image
in (a) is reproduced from Zhang et al.10
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their outer counterparts, have propagated deeper. Rota-
tion of the camera about the load axis confirmed a basic
axisymmetry of both cone crack types. At the same time,
the downward extension of the inner cones was occa-
sionally irregular, with one segment of the crack front
sometimes propagating more quickly than the others,
subsequently to be overtaken by an adjacent segment.10

Figure 3(b) shows a crack pattern at Pm � 500 N. In
this case the deepest crack has the median–radial geom-
etry. Note that this R crack is confined within the walls
of a shallow inner cone, indicating that the median–radial
must have initiated last. As mentioned above, the initial
stages of median–radial evolution were difficult to trace
from the video sequences because of shielding by the
preceding cone cracks. The median–plane geometry in
this case was readily confirmed by rotating the camera
about the contact axis so that the crack was observed
edge-on, and by subsequent viewing in transmitted light
after completion of the test.9

Occasional catastrophic specimen failures occurred af-
ter long cycling (n > 105) at higher loads (Pm > 300 N),
from inner cone or median–radial cracks, attesting to the
potency of these deep-penetrating crack types.

B. Crack size data

Figure 4 plots crack depth c as a function of number of
cycles n for each crack type at one set of loading condi-
tions: fixed sphere radius r � 1.58 mm and maximum
load Pm � 500 N. The data points are individual crack
measurements, each symbol representing an individual

test. The inclined lines are asymptotic long–crack data
fits to a c ∼ n2/3N dependence in Eq. (5), with N � 17 for
glass/water. Back-extrapolation of these lines to the left
axis at n � 1 enables evaluation of c1 in Eq. (6) for each
crack. Note how the curves cross each other. The outer
cones are first to appear, within the first cycle, followed
by inner cones at n � 50 to 70 cycles and finally
median–radials at n � 300 to 450 cycles (arrows). Recall
that the I and R cracks are somewhat obscured in the
initial stages of the evolution, so that the first data points
in this region are “first sightings” and not initiation val-
ues. Whereas the outer cones grow steadily downward
thereafter, closely following the c ∼ n2/3N relation over
most of the data range, the inner cones and especially the
radials accelerate strongly after their first appearance and
grow much more rapidly in the intermediate region, ul-
timately growing to greater depths at large n. Thus, dif-
ferent modes can dominate in different regions of the
crack evolution.

Figure 5 plots the measured c(n) dependence for (a)
outer cone, (b) inner cone, and (c) median–radial cracks,
for several loads Pm between 75 and 750 N at fixed r �
1.58 mm. The solid lines representing the c ∼ n2/3N re-
lation in Eq. (5) are included only for the highest load in
each case to avoid excessive overlap, but it is apparent
that all data sets tend to the same n dependence in the
long-crack region. The data show a systematic shift to
smaller long-term crack length c and to higher number of
cycles for first appearance as Pm diminishes, although
the latter shifts are more pronounced in the case of inner
cones [Fig. 5(b)] and, especially, radials [Fig. 5(c)].

Analogous c(n) data are plotted in Fig. 6, but this time
for different sphere radii r at fixed Pm � 500 N. Whereas
the data shift to higher n for first appearance as r in-
creases, the c ∼ n2/3N asymptote (inclined line) for each
crack type is relatively unaffected, confirming that the
contact conditions are indeed important in the crack ini-
tiation but not in the far-field propagation.

C. Role of test variables

A comparison between critical numbers of cycles to
form the different crack types as a function of maximum
contact load Pm at fixed r is made in Fig. 7. The data are
taken from Figs. 5 and 6, combined with some additional
observations at lower loads in which the experiments
were terminated after crack formation [i.e., without
monitoring the entire c(n) evolution]. The data for outer
cone (O) cracks represent pop-in events. These data are
somewhat limited because initiation occurs within the
first cycle at loads below Pm ≈ 100 N. A fit of nI �
(PC/Pm)N /2 (Appendix), using N � 17 for glass in water
and PC � 100 N at r � 1.58 mm, is shown as the solid
line through the O data. The data for the (partially ob-
scured) inner cone (I) and radial (R) cracks are less well
defined, representing first sightings. For the I cracks, the

FIG. 4. Crack depth c as function of number of cycles n for cracks in
surface-abraded glass. Tests at Pm � 500 N with WC sphere of radius
r � 1.58 mm, frequency 1 Hz, in water. Data for outer (O) and inner
(I) cone cracks, median–radial cracks (R). Inclined lines indicate theo-
retically predicted asymptotic long-crack response in Eq. (5) for ex-
tension solely from slow crack growth, with back-extrapolation to n �
1 (dashed). Arrows indicate crack first sightings. Note how curves for
each crack type cross each other.
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c(n) data appear to have a stronger dependency than their
counterpart O cracks. This would appear to confirm the
presence of a strong superposed mechanical driving force
on the I cracks at large number of cycles. Whereas O
cracks appear to dominate over the bulk of the load

range, there is an indication that I cracks may actually
occur before O cracks at low loads (Pm < 50 N) and high
number of cycles (n > 104). Conversely, the indication is
that R cracks may occur before I cracks at high loads
(Pm > 1000 N) and low number of cycles (n � 1 to 10).

FIG. 5. Crack depth c as function of number of cycles n for (a) outer
cone cracks, (b) inner cone cracks, and (c) median–radial cracks, in
soda-lime glass. Tests in water with WC sphere of radius r � 1.58
mm, frequency 1 Hz, for specified Pm. Inclined line (shown for highest
Pm only) indicates theoretically predicted asymptotic long-crack func-
tion in Eq. 5, with back-extrapolation to n � 1 (dashed).

FIG. 6. Crack depth c as function of number of cycles n for (a) outer
cone cracks, (b) inner cone cracks, and (c) median–radial cracks, in
glass. Tests in water with WC spheres at Pm � 500 N, frequency 1 Hz,
for specified radii r. The inclined line (shown for highest Pm only)
indicates theoretically predicted asymptotic long-crack function in Eq.
(5), with back-extrapolation to n � 1 (dashed).
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Accordingly, the cumulative mechanical effect appears
to be less pronounced in the R cracks.

Figure 8 compares behavior in the asymptotic long-
crack region, by plotting c1 back-extrapolated from the
data in Figs. 5 and 6 as a function of maximum contact
load Pm for each crack type. The solid lines in this figure
represent best fits to c1/Pm

2/3 � constant in accordance
with Eq. (6) at N � 1. These results confirm that R cracks
ultimately grow deepest, followed by I then O cracks.
The results in Fig. 6 suggest that these conclusions will

be independent of sphere radius r, consistent with long-
crack behavior.

V. DISCUSSION

The present study has described the competition be-
tween different crack modes in brittle materials—outer
and inner cone cracks and median–radial cracks—
specifically for soda-lime glass in cyclic blunt contact in
water. Fatigue in outer cone cracks arises solely from
slow crack growth by intrusion of water. Fatigue in inner
cone cracks and radial cracks is more complex, driven in
large part in their initial stages by superposed mechanical
forces arising from hydraulic pumping and precursor
quasiplasticity zones, respectively. Whereas in single-
cycle contact outer cone cracks form at much lower loads
than their competitors, in multi-cycle contact inner cone
cracks can occur first (Fig. 7). Median–radial cracks ap-
pear to compete with inner cones at high P and low n, but
are not so competitive in glass at low P and high n. Given
the relatively innocuous effect of outer cone cracks on
subsequent strength response,2 inner cones and median–
radials would appear to pose the major threat to long-
term performance in repetitive loading in water, at least
in ultra-brittle materials like glass. In coming to this con-
clusion, it is important to reiterate that whereas radials
can form in any environment, inner cones evolve only in
cyclic loading in aqueous environments and are therefore
less likely to be a factor in air. Once they have penetrated
beyond the immediate Hertzian field, radial cracks begin
to dominate, followed by inner then outer cones (Fig. 8).
This makes the first of these two crack types especially
dangerous, not only because of their deep penetration but
also because they tend to lie normal to any subsequent
tensile stresses from spurious flexural loading.

The analysis in Sec. II provides some explicit equa-
tions for the crack evolution. The most complete analysis
is for the outer cone cracks, from integration of a power-
law crack velocity equation, in both initiation and propa-
gation stages. Initiation relations are less well defined for
inner cone and median–radial cracks because of the su-
perposition of mechanical fatigue terms, and are not de-
veloped here. Intermediate fracture evolution between
the short-crack initiation and long-crack propagation
stages is particularly complex, generally requiring nu-
merical (e.g., finite element) analysis. Experimentally, it
is difficult to observe the initiation of inner cones and
median–radials because of visual shielding by the pre-
ceding outer cones. Hence the data in Fig. 7 represent
first sightings rather than true initiation conditions. These
first sighting data provide an upper-bound for crack ini-
tiation. However, once the cracks enter the far-field re-
gion the near-field mechanical driving forces die out, and
all crack types are governed by a common asymptotic
relation of form c ∼ n2/3N based on the same velocity

FIG. 7. Plot of number of cycles as function of maximum indentation
load Pm for appearance of outer (O) and inner (I) cone cracks and
median–radial cracks (R) in glass/water, fixed r � 1.58 mm. Data for
I and R cracks represent crack first sightings, from Figs. 5 and 6.
Arrow indicates runout.

FIG. 8. Plot of c1 in Eq. (6) as function of indentation load Pm for
outer (O) and inner (I) cone cracks and median–radial cracks (R) in
glass/water in long-crack region, fixed r � 1.58 mm. Data obtained
by back-extrapolating long-crack data in Figs. 4–6 to the left axis at
n � 1.
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equation in combination with a simple penny-crack
stress-intensity factor.

Of special interest in the present study is the role of
maximum cyclic load Pm and sphere radius r, reflected in
the basic fracture mechanics relations in Sec. II and in the
data of Figs. 4 to 6. Both initiation and propagation
stages are sensitive to Pm—high loads reduce the critical
number of cycles to form the crack and increase the
ultimate crack depth. Only the initiation and intermediate
stages are sensitive to r, as confirmed in Fig. 6. Basically,
smaller r diminishes the critical loads to initiate both
cone cracking [Eq. (2)] and quasiplasticity [Eq. (3)]. The
r dependence is stronger in Eq. (3) (quadratic) relative to
Eq. (2) (linear), increasing the prospect of yield, and
hence radial cracking, with sharper indenters—i.e., an
intrinsic size effect.8,14 In the long-crack region, the frac-
ture can be approximated by a center-loaded penny ge-
ometry, eliminating any r dependence in Eq. (6).

Our current tests have been conducted on soda-lime
glass, a prototypical brittle material. The transparency of
this material allows direct observation of each damage
mode in situ, enabling determination of the full crack
evolution. Such in situ observations are not possible for
polycrystalline ceramics. However, there is evidence
from post-mortem surface and sectioning examinations
to confirm the existence of the same crack types in a wide
range of ceramic materials.9 The relative dominance of
cone cracks and yield-driven median–radial cracks in ce-
ramics can be gauged by comparing the critical loads PC

and PY in Eqs. (2) and (3), via a brittleness index PY/PC

� (H/E)(H/T)2 for a given sphere radius r (E elastic
modulus, H hardness, T toughness).8 Thus, cone cracks
tend to be dominant in materials with large H/E and H/T
(brittle), median–radial cracks more dominant in materi-
als with low H/E and H/T (quasiplastic). Many polycrys-
talline ceramics, especially those with coarser micro-
structures, tend to fall into the second category—in the
tougher ceramics cone cracks can be suppressed alto-
gether.18,19,23–25 In the more brittle materials, which in-
clude porcelains used in dental crowns and fine-grain
ceramics used in total hip replacements, the material is
more susceptible to cone cracking, especially in aqueous
environments where inner cones are favored.9 These in-
ner cone cracks need further study to determine the criti-
cal material variables in the fracture mechanics, espe-
cially in the first stages of evolution.

Thus we conclude that several fracture modes may
compete in brittle materials. A mode that dominates un-
der any given set of conditions may be superseded under
a different set of conditions: load level (high or low),
load type (static or cyclic), environment (dry or wet),
sphere radius (blunt or sharp), and material type (hard or
soft). Inner cones and radials are particularly dangerous
because they can most easily penetrate even thick brittle
layers and thereby lead to catastrophic failure.
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APPENDIX: CONE CRACK INITIATION

A detailed determination of the critical load to initiate
a cone crack subject solely to slow crack growth has been
made elsewhere,9 and essential details are recounted here
with some minor modifications to suit the present con-
ditions. The contact radius a for indentation with a sphere
of radius r at load P (Fig. 1) for a material of Poisson’s
ratio 	 is given by

a = �Pr�E*�1�3 , (A1a)

with effective modulus E* � 4E/{3[(1 − 	2) + (1 −
	i

2)E/Ei]}.2,26,27 The contact radius a � R at the cone
crack rim defines an engulfment load PR

R = �PRr�E*�1�3 . (A1b)

The radial tensile stress �o acting at the surface coordi-
nate in the region P � PR is

�o =
1

2
�1 − 2	�P�
R2 . (A2)

In the region P � PR the stress �o becomes negative.
Let the indenter be subject to a periodic contact load

P(t) between zero and Pm � PR at frequency f. The
stress-intensity factor for a cone crack of characteristic

dimension c measured along the downward extending
path has the generic form

K(C)���
C�1�2 F�C� , (A3)

with C � c/sin � (� the angle between the cone and the
specimen surface) and F(C) < 1 a dimensionless Greens
function.9,27 Combining the crack velocity relation � �
dC/dt from Eq. (1) in the text with Eqs. (A1)–(A3) and
integrating yields a critical condition for cycles nI to
initiate a cone crack9

nI = �H�N���NG�N���fR��0�R
3�2T�APR�N

= �H�N���NG�N���f��0��PRrE*�1�3�rT2�PRE*�N�2 ,

(A4)

with � � (1 − 2�)/2
1/2 and the quantities G and H
dimensionless integrals28

G�N� = �
0

1
�P�ft��PR�N d�ft� , (A5a)

H�N� = �
Cf�R

CF�R
d�C�R����C�R�1�2 F�C�R��N ,

(A5b)

where  � 1 is the fraction of a cycle in which the
condition P � PR � Pm remains satisfied (i.e., where the
crack is subject to an opening force), Cf is the size of the
starting flaw, and CF is the final crack size at cone crack
pop-in. The quantity G is constant for a given loading
waveform. Strictly, H depends on Cf and CF, but not
strongly because of the stabilizing effect of the dimin-
ishing stress field in the cone initiation.1,14

For outer cone cracks, we suppose that the contact
expands up to the edge of the cone rim at peak loading.
(This is an approximation—usually the cone forms a
small distance outside the maximum contact.) Write
PR � PO � Pm, corresponding to RO � (Pmr/E*)1/3 in
Eq. (A1b) and  � 1 in Eq. (A5a). For the sawtooth load
waveform in Fig. 2,  � 1 in Eq. (A5a). For inner cone
cracks, take the crack location as RI � RO/2, so that
PR � PI � PO(RI/RO)3 � Pm/8 in Eq. (A1) and  � 1/8
in Eq. (A5a).
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ERRATA 

 

Eqn. A4 should read: 

 

  nI = [H(N)/αNG(N)](fR/υ0)(R
3/2T/PR)N  

      = [H(N)/αNG(N)](f/υ0)(PRr/E*)
1/3(rT2/PRE*)

N /2   (A4) 

 

 


